Abstract

ABSTRACTA trigonometric layerwise shear deformation theory is developed for the flexural analysis of laminated plates. The present theory achieves in-plane displacement continuity, transverse shear stress continuity, and traction-free boundary condition. Hence, botheration of shear correction coefficient is neglected. The governing differential equation and boundary conditions are obtained from the principle of virtual work. Although the present analytical method is bounded to a corner supported boundary condition, it neglects the numerical and computational error. Like first-order shear deformation theory, the present theory possesses five numbers of unknowns. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call