Abstract

The present article entails the generation of flexoelectricity during cantilever bending of a solid polymer electrolyte membrane (PEM), composed of poly(ethylene glycol) diacrylate (PEGDA) precursor and ionic liquid (hexylmethylimidazolium hexafluorophosphate). The effects of thiosiloxane modification of PEGDA precursor on glass transition, ionic conductivity, and flexoelectric performance have been explored as a function of PEM composition. The glass transition temperature (Tg) of the PEM declines with increasing thiosiloxane amount in the PEGDA co-network, while the ionic conductivity improves. The PEM/compliant carbonaceous electrodes assemblies were assembled to determine the flexoelectric coefficients by monitoring electrical voltage/current outputs for various PEM compositions under the intermittent square-wave and dynamic oscillatory sine-wave deformation modes. Of particular interest is that the room temperature flexoelectric coefficient exhibits strong frequency dependence in the vicinity of 0.01-10 Hz, suggesting that ion polarization and ion transport through the ion-dipole complexed networks can still be affected by the mobile side chain branches even in the elastic regime of the covalently bonded PEGDA network. The in-depth understanding of the effect of thiosiloxane side chain on flexoelectricity generation is anticipated to have impact on the development of mechanoelectrical energy conversion devices for energy harvesting applications from natural and dynamical environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.