Abstract
We have immunopurified and characterized a new glycoprotein of the extracellular matrix, using a monoclonal antibody obtained after immunization with fibril-associated collagens extracted from bovine tendon. In polyacrylamide gels, the protein migrates at about 350 kDa molecular mass. The protein is insensitive to bacterial collagenase, and no disulfide-linked aggregates could be detected; sugars were stained with periodic acid-Schiff's reagent. Amino acid analysis and sequencing of tryptic peptides failed to detect any similarity with known proteins. By rotary shadowing experiments, the protein was observed as flexible, unbranched structures, approximately 150 nm long, with a small globule at one end. Investigation of the tissue distribution of the protein in fetal bovine tissues by immunofluorescence resulted in labeling in extracellular matrices with loosely packed collagen fibrils, such as the peritendineum, embryonic skin and kidney glomeruli; cornea, cartilage matrix and bone were not labeled. Ultrastructural immunolocalization in dermis and in mesangium of glomeruli showed that the protein always occurred in the vicinity of collagen fibrils. In view of its tissue distribution and molecular shape, we postulate that this protein is important in the properties of the extrafibrillar environment. By reference to its shape as observed by rotary shadowing, we propose the name 'flexilin' for this extracellular matrix glycoprotein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Matrix biology : journal of the International Society for Matrix Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.