Abstract
AbstractIn neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.