Abstract

Multiple strain sensors are required to identify individual forces/stresses on human joints and recognize how they work together in order to determine the motion’s direction and trajectory. However, current sensors cannot detect and differentiate the individual forces/stresses and their contributions to the motion from the sensors’ electrical signals. To address this critical issue, we propose a concept of unimodal tension, bend, shear, and twist strain sensors with piezoelectric poly L-lactic acid films. We then construct an integrated unimodal sensor (i-US) using the unimodal sensors and prove that the i-US can detect and differentiate individual strain modes, such as tensioning, bending, shearing, and twisting in complex motion. To demonstrate the potential impact of unimodal sensors, we design a sleeve and a glove with the i-US that can capture wrist motions and finger movements. Therefore, we expect unimodal strain sensors to provide a turning point in developing motion recognition and control systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.