Abstract

Cellulose, often considered a highly promising substitute for petroleum-based plastics, offers several compelling advantages, including abundant availability, cost-effectiveness, environmental friendliness, and biodegradability. However, its inherent highly crystalline structure and extensive hydrogen-bonded network pose challenges for processing and recycling. In this study, we introduce the concept of cellulose vitrimers (CVs), wherein dynamic bonds are incorporated to reconfigure the hydrogen-bonded network, resulting in a mechanically robust, highly transparent material. CVs exhibit exceptional malleability, thermal stability, and noteworthy resistance to water and solvents. Due to the dynamic bond disassociation, CVs can be effectively chemically recycled using a well-established "dissolution-and-reforming" process. Moreover, CVs have proven successful as flexible substrate materials for organic solar cells, outperforming traditional petroleum-based polyethylene naphthalate (PEN). Given these advantages, CVs have the potential to replace conventional petroleum-based materials as recyclable and environmentally friendly alternatives, particularly within the realm of electronic devices and displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call