Abstract

Transparent and flexible materials are desired for the construction of photoelectric multifunctional integrated devices and portable electronics. Herein, 2H-SiC nanowires are assembled into a flexible, transparent, self-standing nanowire fabric (FTS-NWsF). The as-synthesized ultralong nanowires form high-quality crystals with a few stacking faults. The optical transmission spectra reveal that FTS-NWsF absorbs most incident 200-400 nm light, but remains transparent to visible light. A polydimethylsiloxane (PDMS)-SiC fabric-PDMS sandwich film device exhibits stable electrical output even when repeatedly stretched by up to 50%. Unlike previous SiC nanowires in which stacking faults are prevalent, the transparent, stretchable SiC fabric shows considerable photoelectric activity and exhibits a rapid photoresponse (rise and decay time < 30 ms) to 340-400 nm light, covering most of the UV-A spectral region. These advances represent significant progress in the design of functional optoelectronic SiC nanowires and transparent and stretchable optoelectronic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call