Abstract

Flexible dye-sensitized solar cells (DSSCs) often face the dilemma of the high temperature sintering of TiO2 photoanode to achieve superior performance and low thermal durability of the flexible substrate. Herein, we report a photoanode that combines the flexibility and high-temperature durability, which circumvents the long-standing challenge in flexible photoanode of DSSC. A hybrid mat consisting of anatase-phased TiO2 nanofibers and structurally amorphous SiO2 nanofibers is first prepared via the method of dual-spinneret electrospinning followed by pyrolysis. The hybrid fibrous mat is then impregnated with binder-free TiO2 nanoparticles and sintered at 480 °C to form a flexible composite photoanode for DSSC. The DSSC based on this composite photoanode achieves a power conversion efficiency of 6.74 ± 0.33% on FTO/glass substrate. Device characterization and phototransient measurement, dye-loading experiment, and structural characterization indicate that, in the composite photoanode, the TiO2 nanoparticles enhance the dye loading, the TiO2 nanofibers improve the electron transport, and the SiO2 nanofibers provide the mechanical strength/flexibility. The freestanding composite mat of TiO2 nanoparticles and electrospun TiO2/SiO2 nanofibers, as well as the preparation methods reported herein, not only is ideal for flexible DSSCs, but also can be applied for a broad range of flexible and low-cost energy conversion devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.