Abstract
Magnesium-based battery system has emerged as the potential candidate to beyond Li-ion battery system due to the numerous advantageous of magnesium anode, such as natural abundance, high capacity and dendrites free. However, the selection of cathode materials and the intercalation of magnesium-ions in the cathode host material remains a challenge due to the strong interaction of highly polar divalent magnesium ions with the cathode material, making the diffusion of magnesium ions relatively difficult. Herein, the flexible TiVCTx MXene film was developed via a facile and economical approach. As the cathode host material for magnesium-ion storage, the freestanding TiVCTx MXene film displays a high specific capacity of 111 and 135 mAh g−1 at a current density of 0.05 A g−1 for magnesium-ion batteries (MIB) and Mg/Li hybrid batteries (MLHB). Furthermore, a long-term cycling stability over 1000 cycles was demonstrated and a detailed investigation of the unique long activation phenomenon of MXene films during cycling. More importantly, the reaction mechanism of magnesium-ion storage was validated, i.e., the MXene interlayer spacing variation with the reversible Mg2+ diffusion behavior. This work reveals the magnesium storage mechanism of MXene materials and provides a new pathway for high-performance storage of magnesium-ion cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.