Abstract

Incorporation of quantum dots (QDs) into porous matrices has triggered the development of novel optical devices. In this work, TiO2 sensitized by CdTe incorporated into bacterial nanocellulose (BNC) membranes were tested as photoelectrodes in a photoelectrochemical cell directed to the water splitting for hydrogen generation. The flexible membranes were produced by immersing BNC membranes in an aqueous solution of CdTe capped with glutathione (CdTe–GSH) and further deposited over a thin layer of TiO2. Incorporation of CdTe–GSH into BNC membranes was confirmed by infrared spectroscopy. Fluorescence spectroscopy revealed that the luminescence intensity increased with the immersion time in the CdTe–GSH solution. Field-emission gun scanning electron microscopy (FEG-SEM) images revealed that the CdTe/QDs (5 nm) were homogeneously dispersed on the cellulose nanofibers. BNC/CdTe–GSH membranes was tested as photoelectrodes. Photoelectrochemical cells exhibited a significant photocurrent in wavelengths ranging from 400 to 800 nm, which indicates their potential for applications as flexible electrodes, sensors and photovoltaic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call