Abstract

Flexible pressure sensors possess promising applications in artificial electronic skin, intelligence robot, wearable health monitoring, flexible physiological signal sensing, etc. Herein, we design a flexible pressure sensor with robust stability, high sensitivity, and large linear pressure region on the basis of tetrafluoroethylene-hexafluoropropylene-vinylide (THV)/cyclic olefin copolymer (COC) piezoelectret nanogenerator. According to the theoretical analysis for piezoelectret nanogenerators with imbalanced charge distribution, THV and COC are utilized to promote the electric field inside the piezoelectret for output voltage enhancement. Meanwhile, the compression property of the piezoelectret nanogenerator is facilely tuned. Owing to high inner electric field and optimized compression property, the THV/COC piezoelectret nanogenerator exhibits a high sensitivity of 30 mV/kPa, which is 10 times higher than that of the traditional cellular polypropylene piezoelectret. Simultaneously, the linear pressure region reaches 150 kPa with excellent linearity ( R2 = 0.99963). The device is demonstrated to realize wearable pressure sensing with a wide pressure range from finger typing to fist hammering. This study presents a fabrication strategy for piezoelectret nanogenerators with high sensitivity and large linear pressure region, paving the way for development of wearable and flexible pressure sensing networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.