Abstract
Alta Devices, Inc. has previously reported on single-junction thin-film GaAs photovoltaic devices on flexible substrates with efficiencies up to 28.8% under AM1.5G solar illumination at 1-sun intensity. Here, we show that the same technology platform can be extended to tandem devices that are capable of even higher efficiencies: so far up to 30.8%. Specifically, here, we report on a lattice-matched, series-connected, two-junction device with InGaP as the light-absorbing material of the top cell and GaAs as the absorber in the bottom cell. The material is grown by metallorganic chemical vapor deposition, and then, the device is lifted off by the epitaxial liftoff (ELO) process, as previously reported. This demonstrates that ELO is not only capable of record-setting single-junction performance but capable of achieving world-class efficiency with a multijunction architecture as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.