Abstract

In this work, we used the low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) for a deposition of the nanostructured undoped and indium doped (ZnO and ZnO:In) thin films on flexible polyimide (PI) substrates for their use as cheap non-toxic thermoelectric materials in the flexible thermoelectric modules of planar type to power up portable and wearable electronics and miniature devices. The use of a zincate solution in the SILAR method allows to obtain ZnO:In film, which after post-growth annealing at 300 °C has low resistivity ρ ≈ 0.02 Ω m, and high Seebeck coefficient −147 μV/K and thermoelectric power factor ~1 μW K−2 m−1 at near-room temperatures. As evidence of the operability of the manufactured films as the basis of the TE device, we have designed and tested experimental lightweight thin-film thermoelectric module. This TE module is able to produce specific output power 0.8 μW/m2 at ΔT = 50 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call