Abstract

This paper presents a flexible thermoelectric generator (TEG) with heat path films, which efficiently convert vertical temperature difference (ΔT) into lateral ΔT for thermocouple (TC). The heat path film consists of copper-filled-vias with low thermal resistance and polymer films with high thermal resistance. They were made in two fabrication steps. The first used a flexible printed circuit board with high density copper-filled-vias, while the second saw the deposition of thin film TCs. The combination offers flexibility of application due to its thinness, mass production potential, and low energy heat loss in the device. We demonstrated 54 TCs cm−2 in a 25 cm2 flexible TEG using Bi2Te3- and Nickel-based TCs respectively. The experimental data were in good accordance with a model which was calculated using the finite element method. The prototype flexible TEGs indicated that the proposed structure converted 84% heat flow from vertical into lateral ΔT in each TC, which was two times higher than the non-heat path film. They produced voltage of 11 mV/K/cm2 and power output of 0.1 µW/K/cm2 respectively. These flexible TEGs are ideally suited for harvesting from waste heat emitted from objects with large wavy areas because of their low weight, low cost and high efficiency conversion with flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call