Abstract

Flexible thermoelectric materials and devices have gained wide attention due to their capability to stably and directly convert body heat or industrial waste heat into electric energy. Many research and synthetic methods of flexible high-performance p-type thermoelectric materials have made great progress. However, their counterpart flexible n-type organic thermoelectric materials are seldom studied due to the complex synthesis of conductive polymer and poor stability of n-type materials. In this work, bismuth tellurium (Bi2Te3) nanosheets are in situ grown on single-walled carbon nanotubes (SWCNTs) assisted by poly(vinylpyrrolidone) (PVP). A series of flexible SWCNTs@Bi2Te3 composite films on poly(vinylidene fluoride) (PVDF) membranes are obtained by vacuum-assisted filtration. The high electrical conductivity of 253.9 S/cm, and a corresponding power factor (PF) of 57.8 μW/m·K2 is obtained at 386 K for SWCNTs@Bi2Te3-0.8 film. Moreover, high electrical conductivity retention of 90% can be maintained after a 300-cycle bending test and no obvious attenuation can be detected after being stored in an Ar atmosphere for 9 months, which exhibits good flexibility and excellent stability of the SWCNTs@Bi2Te3 composite films. This work shows a convenient method to fabricate n-type and flexible thermoelectric composite film and further promotes the practical application of n-type flexible thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call