Abstract
Managing temporal process constraints in modularized processes is an important task, both during the design, as it allows the reuse of temporal (child) process models, and during the checking of temporal properties of processes, as it avoids the necessity of “unfolding” child processes within the main process model. Taking into account the capability of providing modular solutions, modeling and checking temporal features of processes is still an open problem in the context of process-aware information systems.In this paper, we present and discuss a novel approach to represent flexible temporal constraints in modularized time-aware BPMN process models.To support temporal flexibility, allowed task durations are represented through guarded ranges that allow a limited (guarded) restriction of task durations during process execution if it is necessary to guarantee the satisfaction of all temporal constraints. We, then, propose how to derive a compact representation of the overall temporal behavior of such time-aware BPMN models. Such compact representation of child processes allows us to check the dynamic controllability (DC) of a parent time-aware process model without “unfolding” the child process models. Dynamic controllability guarantees that process models can have process instances (i.e., executions) satisfying all the temporal constraints for any possible combination of allowed durations of tasks and child processes. Possible approaches for even more flexibility by solving some kinds of DC violations are then introduced.We use a real process model from a healthcare domain as a motivating example, and we also present a proof-of-concept prototype confirming the concrete applicability of the solutions we propose, followed by an experimental evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.