Abstract

Efficient, flexible, thin, and easy processing electromagnetic interference (EMI) performance materials attract attention to prevent increasingly electromagnetic pollution. Herein, we fabricated multiple spatial-scale conductive frameworks containing tantalum carbide (TaC) nanoparticles by electrospinning and high-temperature pyrolysis. The electrospun composite fabrics possess outstanding properties such as an excellent tensile strength of 9.5 MPa and excellent flexibility. Furthermore, the TaC nanoparticles with appropriate concentration can interconnect with each other endowing the composite fabrics with high electrical conductivity of 10.4 S cm−1. It also has great EMI SE of up to 37.7 dB in X band with only 0.2 mm thickness, and the SSE/t values of 4290.1 dB cm2 g−1. Owing to its pore structure, the shielding mechanism is mainly based on reflection and the finite element simulation further visually confirmed the excellent shielding capabilities. This novel electrospun composite fabrics have a great potential to be applied in fields of aerospace, and electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.