Abstract

This paper reports the demonstration of human integrated electronic devices, such as oscillators and RC filters, by utilizing flexible capacitor fabricated using few layer MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> grown on Al foil via hydrothermal method as electrodes and cellulose paper as a dielectric material. There are no reports of MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> on flexible substrate being utilized as capacitor electrode and further applied human interactive devices. Advantage of using MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> on Al foil is the enhanced capacitance upon strain due to the piezoelectric property of few layered MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> over monolayer MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . As the applied strain increases, increase in the capacitance was observed, which is systematically explained by piezoelectric property of MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , change in physical dimensions, and air gap between MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -Al foil and cellulose paper. Upon application of external strain on capacitor, range of frequencies can be generated by oscillator circuit and the mathematical operations such as differentiation and integration are observed for different input signal using RC filter circuits. Further, the fabricated flexible MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> capacitor was integrated to human hand and the corresponding frequency modulation with hand movement was recorded. Such a simple technique for fabrication of flexible variable capacitor is a major step ahead in wearable electronics having applications in digital electronics and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.