Abstract

Benefitting from the wearability, ductility and portability, flexible and stretchable strain sensors display a more extensive field of applications than traditional sensors in terms of medical diagnosis, smart home, environmental monitoring and so on. However, the critical sensing performances, such as sensitivity, sensing range, stability and detection limit of flexible strain sensors still need to be improved. Microstructural optimization has been considered as an efficient strategy for tuning the performances. In this work, a carbon nanotubes (CNTs)/carbon black (CB)/thermoplastic polyurethane (TPU) fibrous film (CCTF) is prepared through electrospinning, spraying and ultrasonic anchoring technique. Synergetic conductive layers by combining CNTs/CB and CB are constructed on both sides of CCTF. In virtue of the optimization of microstructures and the synergetic conductive network, the obtained CCTF possesses an ultrawide response range (up to 500 % strain), high sensitivity (gauge factor, GF up to 1516), short response/recovery time (80/80 ms), low detection limit (0.05 % strain), favorable sensing stability and long-term durability. CCTF with excellent strain sensing performances is assembled as a strain sensor, which accounts for full range human biological signal acquisition, including joint movements, muscle tension, and facial micro-expressions. This paper provides a certain reference significance for the preparation and fabrication of next-generation flexible strain sensors with high performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call