Abstract
AbstractTriboelectric nanogenerator (TENG) devices with high robustness are promising in collecting powerful energy. In this study, highly elastic and pressure‐resistance sponge fabricated TENG capable of adapting to high strength impact in land and water transportation and scalable for any shape is demonstrated for harvesting wave energy and mechanical energy. The polydimethylsiloxane sponge prepared by sacrificial template method has interconnected network and large size ratio of cavity‐wall suitable for contact and separation. The operation modes of self‐contact and extra‐contact collaborating with MXene in electron transfer provide options for different operating conditions. The polydopamine‐MXene modification of the sponge enables higher output due to the combination of the electronegativity, excellent adhesion, and antioxidant ability. Sponges are used to collect mechanical energy and applied for TENG‐powered cathodic protection, making the 304 stainless steel (304 SS, Φ = 2 mm) electrode enter a thermodynamic stable state. What's more, the work also tries the universal strategies of program monitoring wave in the water tank and harvests the mechanical energy created by cars and passers‐by, which enrich the applications of sponge TENG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.