Abstract

AbstractFlexible sensors have attracted significant attention as they could be directly attached to/implanted into the body or incorporated into textiles to monitor human activities and give feedbacks for healthcare. A typical fabrication method is the direct use of intrinsically flexible active materials such as carbon nanotubes (CNTs). CNTs are generally assembled into aligned structures to extend their remarkable chemical, mechanical, and electrical properties to macroscopic scale to afford high sensing performances. In this review, we present the recent advance of CNT assemblies as electrodes or functional materials for flexible sensors. The realizations of aligned CNTs are firstly investigated. A variety of flexible sensors based on the aligned CNTs are then carefully explored, with an emphasis on understanding the working mechanism for their high sensing properties. The main attention is later paid to comparing two main categories of flexible sensors with fiber and film shapes. The remaining challenges are finally highlighted to offer some insights for future study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.