Abstract
Scintillation fibers based on rare-earth ion-doped crystal materials have attracted significant attention for applications in a wide range of areas from security to healthcare. However, the scintillation performance of crystal fibers is severely limited owing to the complex preparation process. Here, we report a modified preparation process of the transparent Ce/Tb co-doped yttrium pyrosilicate (YPS) nanocrystal silica fiber for the first time, which was fabricated by the CO2 laser-heated method assisted with optimal thermal annealing. An YPS nanocrystal phase with an average size of approximately 38 nm is obtained by controlling the diffusion concentration of SiO2 in the fiber core region. Both Ce3+ and Tb3+ ions were successfully embedded into YPS nanocrystals, which enhanced the energy transfer with an efficiency of 59.87% between the dopants as well as brighter green light emission. Furthermore, the X-ray-excited remote radioluminescence response of the obtained YPS nanocrystal fiber with a length of 20 m was approximately 1 order of magnitude larger than that of the precursor fiber, while the dose rate response exhibited excellent linearity. It is believed that the novel transparent YPS nanocrystal-doped silica optical fibers, combined with their excellent fluorescent properties, could be promising candidates for scintillators, fiber lasers, and phosphors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.