Abstract
AbstractA reliable and low‐cost solution‐processing procedure to synthesize a highly adhesive flexible metal antenna with low resistivity for radio‐frequency identification device (RFID) tags on paper substrates via inkjet printing combined with surface modification and electroless deposition (ELD) is demonstrated in this paper. Through the surface modification of colloidal solution of hydrolyzed stannous chloride and chitosan solution, the paper‐based substrate is able to reduce the penetration rate of ink and further increase the adsorption amount of silver ions, which could create a catalytic activating layer to catalyze the subsequent ELD of a conductive deposited metal antenna. The resulting metal antenna for RFID tags presents good adhesive strength and low resistivity of 2.58 × 10−8 Ω·m after 40 min of ELD, and maintains a reliable reading range of RFID tags even after over 1000 times of bending and mechanical stress. Consequently, the developed technology proposed allows for cheap, efficient, and massive production of metal antenna for paper‐based RFID tags with excellent mechanical and electrical properties. Furthermore, this process is especially advantageous for the fabrication of next‐generation flexible electronic devices based on paper substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.