Abstract

The use of flexible pressure sensors has significantly advanced and improved human life. However, several issues are hindering their applicability such as the difficulty to achieve high sensitivity over a wide pressure measurement range. Herein, a one-step foaming method and hydrothermal approach were used to fabricate a three-dimensional conductive porous foam comprising polyurethane, carbon nanotube, and polyaniline. The sensor exhibits excellent electrical conductivity due to its cellular foam structure, while its high durability enables a large response output across an extremely broad range (0–30 000 kPa). The sensor also exhibits exceptional stability over 1000 loading/unloading cycles, a fast response time of 80 ms, and high sensitivity of 0.019 53 kPa−1 (0–200 kPa), 0.126 48 kPa−1 (200–5000 kPa), and 0.038 85 kPa−1 (5000–30 000 kPa). Furthermore, rational material selection and structural design allows the sensor to monitor low- to high-signal stimuli, thereby providing a reference for the design of other large-scale sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.