Abstract

The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.