Abstract

Electronic skin (E-skin) has gained significant attention due to its potential applications in the Internet of Things (IoT), artificial intelligence (AI), and flexible multi-sensing systems. Mimicking human skin, e-skin sensing devices can be employed in various scenarios. Among the most important sensing elements for tactile e-skin sensors are pressure and temperature sensors, which have increasingly garnered research interest over the past few decades. However, the design and fabrication of advanced pressure and temperature sensors can be challenging owing to complications such as signal interference, complex mechanism integration, and structural design issues. This review provides an overview of flexible pressure and temperature sensors used in e-skin, covering four main perspectives: material selection, mechanism integration, structural design, and manufacturing methods. The materials of different elements in the entire sensing system are comprehensively discussed, along with single and compound mechanisms of pressure and temperature sensing. Pressure and temperature sensors are divided into two types based on their electric output signals, which are exemplified in detail. The manufacturing methods used to fabricate these sensors, including printing methods, are outlined. Lastly, a summary of the future challenges faced by flexible pressure and temperature sensors used in e-skin is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.