Abstract

An all polymer piezo/pyroelectric device was fabricated using β phase poly(vinylidene fluoride) (PVDF) as the active material and vapor phase polymerized (VPP) poly(3,4-ethylenedioxythiphene) (PEDOT) as the flexible electrode overlay material. Inherent problems usually associated with coating polymeric electrodes onto the low surface energy PVDF were overcome by air plasma treating the film in conjunction with utilizing the VPP technique to simultaneously synthesize and in situ deposit the PEDOT electrode. Strain measurements up to the breaking-strain of PVDF (approximately 35%) indicated that the change in R/Ro was significantly smaller for the PEDOT based electrodes compared to the platinum electrode. Plasma treatment of the PVDF film increased the level of surface oxygenated carbon species that contributed to increased surface energy, as confirmed by confirmed by contact angle measurement. The enhanced adhesion between the two polymers layers contributed to a significant increase in the measured piezoelectric output voltage from 0.2 to 0.5 V for the same strain conditions. Pyroelectric voltage outputs were obtained by placing the film onto and off of a hotplate, for temperatures up to 50 °C above ambient. Finally, as a proof of concept, a simple energy harvesting device (plastic tube with slots for mounting multiple piezo/pyro films) was fabricated. The device was able to generate a usable level of peak output current (>3.5 μA) from human inhalation and exhalation "waste energy".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.