Abstract
Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over .
Highlights
Recent advancements in wearable sensors have promoted major scientific and technological developments in the field of human activity recognition [1,2]
We introduce a flexible piezoelectric sensor-based gait recognition system available in loose clothing
We demonstrate a gait detection system based on the outputs of the flexible piezoelectric sensors
Summary
Recent advancements in wearable sensors have promoted major scientific and technological developments in the field of human activity recognition [1,2]. The sensing part can be combined to gait assistant system [7,8] Various wearable sensors, such as inertial measurement units (IMU), pressure sensors, force sensitive resistors, accelerometers, and gyroscopes, are utilized for gait recognition and analysis [2,4,9]. These sensors are positioned on hips, thighs, knees, shanks, and feet in the lower body; they measure angles and contacts during walking [4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.