Abstract

A flexible acoustic emission (AE) sensor based on lead zirconate titanate (PZT) nanofiber composite membrane is described. The PZT nanofibers, with diameters varying from 50nm to 120nm, were electrospun and aligned across interdigitated electrodes. After being packaged in a flexible polymer structure with a thickness of ∼5μm, this small scale AE sensor can bend freely to follow curved surfaces or embedded into structures. High piezoelectric voltage constant, flexibility and mechanical strength of PZT nanfibers result in a high performance of the demonstrated AE sensor. Fundamental characterization indicates a spontaneous polarization of the PZT nanofibers without any polarization treatment. The electromechanical coupling effect was increased up to 370% after 90min of polarization under an external electric field of ∼3V/μm. The anisotropic sensitivity, which can reduce the required number of sensors to indentify the location of the AE source, was observed from the attenuation maps. The small scale, flexible and highly sensitive PZT nanofiber AE sensor opens up new applications for monitoring small scale structures, curved surfaces and even living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.