Abstract

Organic–inorganic lead halide perovskite materials have recently attracted much attention in the field of optoelectronic devices. Here, a hybrid piezoelectric nanogenerator based on a composite of piezoelectric formamidinium lead halide perovskite (FAPbBr3) nanoparticles and polydimethylsiloxane polymer is fabricated. Piezoresponse force spectroscopy measurements reveal that the FAPbBr3 nanoparticles contain well‐developed ferroelectric properties with high piezoelectric charge coefficient (d33) of 25 pmV−1. The flexible device exhibits high performance with a maximum recordable piezoelectric output voltage of 8.5 V and current density of 3.8 μA cm−2 under periodically vertical compression and release operations. The alternating energy generated from nanogenerators can be used to charge a capacitor and light up a red light‐emitting diode through a bridge rectifier. This result innovatively expands the feasibility of organic–inorganic lead halide perovskite materials for application in a wide variety of high‐performance energy harvesting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.