Abstract

Flexibility and lightweight are promising research topics for space science and technology, which benefit to reduce load, reduce volume, and integrate device. However, most photoelectronic devices on spacecraft are rigid devices now, because the space environment consists of irradiations and thermal cycling, with higher requirements for flexible photoelectronic materials and devices. The main bottlenecks include: the synthesis of space-durable packaging materials, the fabrication and packaging of flexible photoelectronic devices, and the effective investigation method for irradiation mechanism analysis. In view of these problems, this review presents the synthesis of bulk-phase silicon-reinforced yellow and transparent polyimides with space durability, the optical modulation of bulk-phase silicon-reinforced polyimide to ultra-black film and flexible color filters, the electrical modulation of bulk-phase silicon-reinforced polyimide into flexible transparent electrode, the integration of the bulk-phase silicon-reinforced transparent polyimide and flexible triple-junction GaAs thin-film solar cell, and the exploration of general investigation methods for irradiation mechanism based on the penetration depth and damage modes including atomic oxygen, ultraviolet, electron, proton, and thermal cycling. The material synthesis, device fabrication, and mechanism analysis method focus on the core scientific problems of space-durable flexible lightweight photoelectronic materials and devices, leading the development direction of flexible and lightweight space science and technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call