Abstract

Page protection is often used to achieve memory access monitoring in many applications, dealing with program-analysis, checkpoint-based failure recovery, and garbage collection in managed runtime systems. Typically, low overhead access monitoring is limited by the relatively large page-level granularity of memory management unit hardware support for virtual memory protection. In this paper, we improve upon traditional page-level mechanisms by additionally using hardware support for virtualization in order to achieve fine and flexible granularities that can be smaller than a page. We first introduce a memory allocator based on page protection that can achieve fine-grained monitoring. Second, we explain how virtualization hardware support can be used to achieve dynamic adjustment of the monitoring granularity. In all, we propose a process-level virtual machine to achieve dynamic and fine-grained monitoring. Any application can run on our process-level virtual machine without modification. Experimental results for an incremental checkpoint tool provide a use-case to demonstrate our work. Comparing with traditional page-based checkpoint, our work can effectively reduce the amount of checkpoint data and improve performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call