Abstract

Organic heterostructures based on zinc phthalocyanine (ZnPc) and perylene tetracarboxylic dianhydride (PTCDA) were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique on conductive flexible substrate (ITO/PET) in three configurations: ZnPc/PTCDA (stacked layers), ZnPc:PTCDA (blend) and ZnPc/ZnPc:PTCDA/PTCDA. The effect of the configuration on the optical and electrical properties of the obtained heterostructures was investigated. For all heterostructures was observed an improved optical absorption in visible domain. The I–V characteristics recorded under illumination, revealed higher short circuit current (ISC) values for the ZnPc:PTCDA and ZnPc/ZnPc:PTCDA/PTCDA structures in comparison with that of the ZnPc/PTCDA structure. The results proved that by MAPLE can be obtained flexible organic heterostructures (in different configurations) with properties adequate for applications in flexible electronics and solar cell fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call