Abstract

Optical limiters are greatly needed to protect eyes and sensitive optoelectronic devices such as photodetectors and sensors from laser damage, but they are currently plagued by low efficiency. In this work, we utilized Cu3VSe4 nanocrystals (NCs) to enhance laser protection performance, and they exhibit higher saturation intensity and broader nonlinear spectral response extending into the near IR region than the C60 benchmark. A flexible optical limiter goggle prototype based on the NCs significantly attenuated the incident laser beam, with Z scan and I scan measurements demonstrating a giant nonlinear absorption coefficient β value of 1.0 × 10-7 m W-1, a large optical damage threshold of 3.5 J cm-2, and a small starting threshold of 0.22 J cm-2. Transient absorption spectroscopy disclosed that the origin of the excellent nonlinearity was associated with quasi-static dielectric resonance behavior and a large TPA cross-section of 3.3 × 106 GM was measured for Cu3VSe4 NCs, suggesting the potential of intermediate bandgap (IB) semiconductors as alternatives to plasmonic noble metals for ultrafast photonics. Hence, optical limiters based on such semiconductors offer new avenues for laser protection in optoelectronic and defense fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.