Abstract

We present a novel approach for the control of the solvent regeneration system of amine-based CO2 capture processes. This relies on the real-time evaluation of the cost-optimal extent of solvent regeneration at given energy and CO2 prices. To achieve this, a multilevel, model predictive control architecture is proposed and developed for this system. The low-level control regulates the level of solvent inside the reboiler and the power supplied to the system, while the high-level control regulates the extent of the solvent regeneration in order to minimize the operating cost. This approach ensures the safe operation of the system while concurrently enhancing process flexibility. We demonstrate that this new technique can result in a reduction of up to 10% in energy cost required for solvent regeneration. A simulator tool developed in Matlab™ is available on request.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.