Abstract

Flexible droplet preparation and manipulation are significant for lots applications such as immunoreaction and monocellular culture. Herein, we present a novel method for effective on-chip droplet generation, splitting and switching via controllable hydrodynamics. The microchannel of the designed chip has 6 inlets and 3 three outlets. The water solution is injected from a specific inlet (inlet d), and the other 5 inlets are used to inject oil fluids. Under the shearing effect of immiscible oils, the water phase breaks into dispersed droplets first, and the generated droplets can be further split into daughter drops or switched into side outlets from the middle outlet. To investigate the hydrodynamic droplet manipulation behaviors, a two-dimensional simulation model based on phase-field method is established. Utilizing the computational model, we systematically analyze the influences of the flow rates of continuous and dispersed fluids and the manipulation modes on droplet generation, splitting and switching. The numerical results indicate that the droplets can be generated with controlled sizes. For instance, at Qd = 5 μL/min and Qc1,2 = 5 μL/min, the droplet diameter decreases from 89.2 μm to 49.2 μm as Qs1,2 gradually rises from 15 μL/min to 40 μL/min. Moreover, the prepared droplets can realize on-demand splitting and switching. When Qd, Qc1,2, and Qs1,2 are fixed at 5 μL/min, 5 μL/min and 25 μL/min, respectively, the generated droplet is split into different proportional daughter drops with the rising of Qs3 (or Qs4) at first, and finally it is switched into the side-outlets when Qs3 (or Qs4) is higher than 80 μL/min. Therefore, this proposed droplet manipulation approach will be promising for various applications, and the numerical simulations can provide useful guidelines on the design and operation of droplet-based microfluidic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.