Abstract
Nowadays, multi-access edge computing (MEC) has been widely recognized as a promising technology that can support a wide range of new applications for the Internet of Things (IoT). In dynamic MEC networks, the heterogeneous computation capacities of the edge servers and the diversified requirements of the IoT applications are both asymmetric, where and when to offload and schedule the time-dependent tasks of IoT applications remains a challenge. In this paper, we propose a flexible offloading and task scheduling scheme (FLOATS) to adaptively optimize the computation of offloading decisions and scheduling priority sequences for time-dependent tasks in dynamic networks. We model the dynamic optimization problem as a multi-objective combinatorial optimization problem in an infinite time horizon, which is intractable to solve. To address this, a rolling-horizon-based optimization mechanism is designed to decompose the dynamic optimization problem into a series of static sub-problems. A genetic algorithm (GA)-based computation offloading and task scheduling algorithm is proposed for each static sub-problem. This algorithm encodes feasible solutions into two-layer chromosomes, and the optimal solution can be obtained through chromosome selection, crossover and mutation operations. The simulation results demonstrate that the proposed scheme can effectively reduce network costs in comparison to other reference schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.