Abstract

In order to flexibly and completely suppress dynamic interference, a flexible and robust beamforming based on JADE is proposed in this paper. In addition, it is insensitive to the gain–phase errors of the array. Firstly, the actual steering vector with gain–phase errors is separated from the received snapshot data by the joint approximate diagonalization of eigenmatrix (JADE) algorithm. Secondly, the direction of arrival (DOA) of interference can be estimated from the separated actual steering vector by the correlation coefficient method. Thus, the actual interference steering vector with gain–phase errors can be selected by the correlation coefficient with the nominal steering vector constructed by the estimated DOA. Then, the interference covariance matrix can be reconstructed by the actual interference steering vector, and the interference power estimated by the Capon power spectral. Finally, according to the prior information of the interference, only the dynamic interference covariance matrix is tapered by the novel covariance matrix trap (CMT), which can flexibly broaden and deepen the null. Simulation results show that the depth of the proposed beamformer is more than 10 dB deeper than that of the traditional algorithm in the non-stationary interference. In addition, it can save at least 2 degrees of freedom compared to the traditional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.