Abstract

Antimicrobial phototherapy has gained recognition as a promising approach for addressing bacterial biofilms, however, its effectiveness is often impeded by the robust physical and chemical defenses of the biofilms. Traditional antibacterial nanoplatforms face challenges in breaching the extracellular polymeric substances barrier to efficiently deliver photosensitizers deep into biofilms. Moreover, the prevalent hypoxia within biofilms restricts the success of oxygen-reliant phototherapy. In this study, we engineered a soft mesoporous organosilica nanoplatform (SMONs) by incorporating polyethylene glycol (PEG), catalase (CAT), and indocyanine green (ICG), forming SMONs-PEG-CAT-ICG (SPCI). We compared the antimicrobial efficacy of SPCI with more rigid nanoplatforms. Our results demonstrated that unique flexible mechanical properties of SPCI enable it to navigate through biofilm barriers, markedly enhancing ICG penetration in methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Notably, in a murine subcutaneous MRSA biofilm infection model, SPCI showed superior biofilm penetration and pharmacokinetic benefits over its rigid counterparts. The embedded catalase in SPCI effectively converts excess H2O2 present in infected tissues into O2, alleviating hypoxia and significantly boosting the antibacterial performance of phototherapy. Both in vitro and in vivo experiments confirmed that SPCI surpasses traditional rigid nanoplatforms in overcoming biofilm barriers, offering improved treatment outcomes for infections associated with bacterial biofilms. This study presents a viable strategy for managing bacterial biofilm-induced diseases by leveraging the unique attributes of a soft mesoporous organosilica-based nanoplatform. Statement of significanceThis research introduces an innovative antimicrobial phototherapy soft nanoplatform that overcomes the inherent limitations posed by the protective barriers of bacterial biofilms. By soft nanoplatform with flexible mechanical properties, we enhance the penetration and delivery of photosensitizers into biofilms. The inclusion of catalase within this soft nanoplatform addresses the hypoxia in biofilms by converting hydrogen peroxide into oxygen in infected tissues, thereby amplifying the antibacterial effectiveness of phototherapy. Compared to traditional rigid nanoplatforms, this flexible nanoplatform not only promotes the delivery of therapeutic agents but also sets a new direction for treating bacterial biofilm infections, offering significant implications for future antimicrobial therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.