Abstract

Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.