Abstract

AbstractNano‐fibrous felts (nano‐felts) of carbide‐derived carbon (CDC) have been developed from the precursor of electrospun titanium carbide (TiC) nano‐felts. Conformal transformation of TiC into CDC conserves main features of the precursor including the high interconnectivity and structural integrity; the developed TiC‐CDC nano‐felts are mechanically flexible/resilient, and can be used as electrode material for supercapacitor application without the addition of any binder. After synthesis through chlorination of the precursor at 600 °C, the TiC‐CDC nano‐fibers show an average pore size of ∼1nm, a high specific surface area of 1390 m2/g; and the nano‐fibers have graphitic carbon ribbons embedded in a highly disordered carbon matrix. Graphitic carbon is preserved from the precursor nano‐fibers where a few graphene layers surround TiC nanocrystallites. Electrochemical measurements show a high gravimetric capacitance of 110 F/g in aqueous electrolyte (1 M H2SO4) and 65 F/g in organic electrolyte (1.5 M TEA‐BF4 in acetonitrile). Because of the unique microstructure of TiC‐CDC nano‐felts, a fade of the capacitance of merely 50% at a high scan rate of 5 V/s is observed. A fade of just 15% is observed for nano‐felt film electrodes tested in 1 M H2 SO4 at 1 V/s, resulting in a high gravimetric capacitance of 94 F/g. Such a high rate performance is only known for graphene or carbon‐onion based supercapacitors, whereas binders have to be used for the fabrication of those supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.