Abstract
This article is concerned with multivariate density estimation. We discuss deficiencies in two popular multivariate density estimators—mixture and copula estimators, and propose a new class of estimators that combines the advantages of both mixture and copula modeling, while being more robust to their weaknesses. Our method adapts any multivariate density estimator using information obtained by separately estimating the marginals. We propose two marginally adapted estimators based on a multivariate mixture of normals and a mixture of factor analyzers estimators. These estimators are implemented using computationally efficient split-and-elimination variational Bayes algorithms. It is shown through simulation and real-data examples that the marginally adapted estimators are capable of improving on their original estimators and compare favorably with other existing methods. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.