Abstract

We propose a type of semiconductor laser (SL) network that supports flexible chaos synchronization and multipoint-to-multipoint communications by using one-way isolation (OWI). The properties of chaos synchronization, influences of coupling strength and time delay mismatches on the quality of chaos synchronization, and the performance as well as the security of the SL network-based chaotic communications are systematically discussed. The numerical results demonstrate that, with the introduction of OWI, flexible chaos synchronization can be easily achieved in arbitrary-size SL clusters over wide parameter spaces of coupling strength and current factor. Based on the high-quality flexible chaos synchronization, satisfactory performance for Gb/s chaotic communications can be achieved in arbitrary-size clusters in the SL networks. Moreover, it is also indicated that in the SL networks, the security of intra-cluster communications can be guaranteed in three aspects. Firstly, the eavesdroppers cannot intercept any useful information by using a typical illegal attack. Secondly, due to the OWI, the chaotic carriers are only transmitted in the corresponding clusters, not transmitted among clusters, as such the security can be further improved. Thirdly, the high sensitivity of cross-correlation coefficient to the injection delay mismatches indicates that the injection delays of idle SLs to communicating SLs can be regarded as the keys of the communication clusters. The proposed scheme offers an alternative solution to flexible secure network-type communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.