Abstract

The main objective of this study is to propose a methodology for building a parametric linear model of flexible multibody systems (FMS) for control design. This new method uses a combined finite element (FE)–state-space approach based on component mode synthesis and a double-port approach. The proposed scheme offers the advantage of an automatic assembly of substructures, preserving the elastic dynamic behavior of the whole system. Substructures are connected following the double-port approach for considering the dynamic coupling among them, i.e., dynamic coupling is expressed through the transfer of accelerations and loads at the connection points. The proposed model allows the evaluation of arbitrary boundary conditions among substructures. In addition, parametric variations can be included in the model for integrated control/structure design purposes. The method can be applied to combinations of chainlike or/and starlike flexible systems, and it has been validated through its comparison with the assumed modes method (AMM) in the case of a rotatory spacecraft and with a nonlinear model of a two-link flexible arm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call