Abstract

This paper presents a discretization procedure for the flexible multibody modeling of reeving systems. Reeving systems are assumed to include a set of rigid bodies connected by wire ropes using a set of sheaves and reels. The method is capable to model the deformation of the varying-length wire-rope spans. Wire ropes are assumed to deform axially, transversally and in torsion. This paper shows the capability of the presented method to model transverse vibrations. The discretization procedure uses a combination of absolute position coordinates, relative-transverse deformation coordinates and longitudinal material coordinates. Each wire-rope span is modeled using a single two-noded element under an arbitrary Lagrangian–Eulerian approach. The discretization method is validated using analytical and numerical reference solutions found in the literature that describe the dynamics of varying-length strings. In addition, the dynamics of a three-dimensional tower crane is simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.