Abstract

Bisphenol F (BPF) has evoked global attentions due to its ubiquity and detrimental effects. Herein, a flexible molecularly imprinted fiber library was firstly proposed for the metabolic analysis of BPF in aquatic ecosystems. The library includes flexible single fibers and fiber arrays to precisely identify BPF and its metabolites with a wide range of polarities. Compared to commercial polyacrylate, the performance increased 11.56–570.98-fold. The adsorption capacity and the LogKow value were positively related. These arrays were used for the acquisition of environmental metabolomics data from aquatic ecosystems. In-depth data analysis showed that risk quotient was lower than 0.76, and bioaccumulation factor was lower than 2000 L/kg. Distribution concentration of BPF and its metabolites changed seasonally, and accumulation in sediment was much larger than that in surface water and hydrobionts. The risk is gradually increasing in sediment, but it does not reach high risk. The likelihood of bioaccumulation of parent compounds was greater than its metabolites. The library can be used in the metabolic diagnosis of pollutants with a broad range of polarities, providing a new method to acquire data for further ecological risk assessment, and offering a revolutionary strategy for environmental metabolomics investigation in aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.