Abstract

Mixed-criticality (MC) system has attracted a lot of research attention in the past few years for its resource efficiency. Recent work attempted to provide a new MC model, the so-called Flexible Mixed-Criticality (FMC) task model, to relax the pessimistic assumptions in classic MC scheduling. However, in FMC, the behavior of MC tasks is still analyzed in offline stage. The run-time behavior such as dynamic slack has not yet been studied in FMC scheduling framework. In this paper, we present a utilization-based slack scheduling framework for FMC tasks. In particular, we monitor task execution on run time and collect dynamic slacks generated by task early completion. And these slacks can then be used either by high-criticality tasks to reduce mode-switches, or by low-criticality tasks so that less suspensions are triggered with more execution time, and thus quality of service is improved. We evaluate our approach with extensive simulations, and experiment results demonstrate the effectiveness of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.