Abstract

The actual failure times of individual components are usually unavailable in many applications. Instead, only aggregate failure-time data are collected by actual users, due to technical and/or economic reasons. When dealing with such data for reliability estimation, practitioners often face the challenges of selecting the underlying failure-time distributions and the corresponding statistical inference methods. So far, only the exponential, normal, gamma and inverse Gaussian distributions have been used in analyzing aggregate failure-time data, due to these distributions having closed-form expressions for such data. However, the limited choices of probability distributions cannot satisfy extensive needs in a variety of engineering applications. PHase-type (PH) distributions are robust and flexible in modeling failure-time data, as they can mimic a large collection of probability distributions of non-negative random variables arbitrarily closely by adjusting the model structures. In this article, PH distributions are utilized, for the first time, in reliability estimation based on aggregate failure-time data. A Maximum Likelihood Estimation (MLE) method and a Bayesian alternative are developed. For the MLE method, an Expectation-Maximization algorithm is developed for parameter estimation, and the corresponding Fisher information is used to construct the confidence intervals for the quantities of interest. For the Bayesian method, a procedure for performing point and interval estimation is also introduced. Numerical examples show that the proposed PH-based reliability estimation methods are quite flexible and alleviate the burden of selecting a probability distribution when the underlying failure-time distribution is general or even unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.