Abstract

Portable lightweight electromagnetic (EM) head imaging systems for brain stroke detection are of great interest due to the need for fast and low-cost diagnosis tools. This communication presents a wideband and compact flexible meander-line antenna array for a wearable EM head imaging system. The antenna is designed and optimized on a 4 mm thick low-cost, flexible room-temperature-vulcanizing (RTV) silicone substrate in close vicinity to a multitissue head model. The antenna comprises two sections of meander-lines, a full ground plane, and a 50 Ω coaxial connector. The measured reflection coefficient |S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> | on a human head shows that the proposed antenna operates effectively across the frequency band of 0.45-3.6 GHz, attaining fractional bandwidth (FBW) of 155%. The antenna achieves unidirectional radiations with greater than 9 dB of front-to-rear ratio in the near-field region, and safe-level maximum specific-absorption rate (SAR) below 0.2 W/kg using an input power of 10 dBm. A 16 element antenna array was assembled and experimentally utilized in an EM head imaging system. The reconstructed images of abnormality-emulating targets using a confocal imaging algorithm demonstrate the feasibility of utilizing such flexible and lightweight antennas for wearable EM head imaging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call