Abstract

Adaptation of wet chemical processing or replica molding techniques to microcavity plasma device technology has yielded lightweight and flexible arrays in the Al/Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> materials system and plastic substrates, respectively. Microplasma arrays fabricated from two bonded sections of Al mesh with an integral dielectric barrier of nanoporous alumina have an overall thickness of <100 mum, resulting in lamps that are flexible and conformable to a variety of surfaces. Operating these arrays in both flat and curved configurations reveals few changes to the voltage-current characteristics but a reduction of a factor of two in the luminance of curved or bent structures relative to that for a flat array. Truncated paraboloid cavities have also been formed in 30-70-mum-thick Al foil by a sequence of wet chemical processes. Microcavities with an emitting aperture diameter as small as 50 mum have been realized, and arrays comprising 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> cavities exhibit ignition voltages of ~140-150 V (rms) for Ne pressures between 400 and 700 torr and a 20-kHz sinusoidal voltage waveform. Mixtures of Ne and Xe with Xe content up to 67% have been operated successfully. Ignition voltages of only 70-90 V (rms) have been measured for 30 times 30 arrays of 200 times 200-mum <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> microcavities formed in ultraviolet curable polymer by replica molding and operating in 400-600 torr of Ne. For 3% N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Ar mixtures at total pressures of 400-700 torr, the ignition voltages rise to ~150-220 V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">RMS</sub> for a driving frequency of 20 kHz, the array emission is spatially uniform, and rms currents above 85 mA can be drawn in the steady state by these plastic-based arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call